
Request for comments:
Community Science Data

Interchange Format

Document identifier: CSDIF-001-RFC
Revision: 2
Date: 2025-06-26
License: CC-BY-4.0

https://www.csdif.info

Table of Contents
1 Introduction..3

1.1 Document scope and status...3
1.2 Community vs Citizen Science..3
1.3 Project and context..3
1.4 Existing infrastructure and limitations...5
1.5 Goals and usecases..5

1.5.1 Non-goals..6
1.5.2 Metadata concepts..7

2 Proposal: Interchange format..8
2.1 Approach..8

2.1.1 Data model vs Access API...9
2.1.2 Simple and complex implementations..9

2.2 Underlying standards..10
2.2.1 OGC Observations, Measurements & Samples (OMS).........................11

Features...11
Observations..12
Measurements..12
Values... 12
Location..12
Time..12
Other concepts...12

2.2.2 OASIS OData...12
2.2.3 OGC SensorThings API (STA)...13

Observation objects..13
Datastream and MultiDatastream objects...14
Sensor objects..14

CSDIF-001-RFC (revision 2, 2025-06-26)p1/37

https://www.csdif.info/

Thing objects..15
 Object attributes...15
API Endpoints...16

2.2.4 OGC Sensor Model Language (SensorML)...16
2.3 CSDIF Example..17
2.4 Data model...20

2.4.1 Objects from SensorThings...20
2.4.2 Metadata using SensorML..21
2.4.3 Ontologies...22
2.4.4 Identifiers..22

Unique identifier for observations...23
Generating unique identifiers..24

2.4.5 Storing Metadata..24
2.5 Access API... 25

2.5.1 Query options..25
2.6 Other considerations...26

2.6.1 History of Things..26
2.6.2 Thing location...26
2.6.3 Coordinate reference frames..27
2.6.4 Data modified for privacy reasons..28
2.6.5 Timestamp precision...28
2.6.6 Data ownership and licensing...28
2.6.7 Object names, labels and descriptions...29
2.6.8 SensorThings 2.0..30
2.6.9 SensorThings requirement classes...30

2.7 Open questions..31
2.8 Risks.. 33

2.8.1 Using non-final specifications...33
2.8.2 Specification complexity...33
2.8.3 Privacy leaks...34

3 Existing systems and solutions..34
3.1 Other protocols and systems that we considered.......................................34
3.2 Existing implementations of SensorThings...35

3.2.1 RIVM Samen Meten..35
3.2.2 OpenSensorHub..36
3.2.3 FROST server..36

4 Revision history..36

CSDIF-001-RFC (revision 2, 2025-06-26)p2/37

1 Introduction

1.1 Document scope and status
This document makes the case for introducing a new standard format for data
interchange between citizen and community science initiatives and institutional
partners, building on top of an existing API and standard.

This document shows the background and need, and sketches a proposal for this
new format. It does not propose a complete specification for this format, but has
enough details to collect feedback and to start a prototype implementation to try
out the concepts.

This document was created by Meet Je Stad Amersfoort together with SMAL
Zeist, with some input from other parties. As a next step, these ideas will be
shared and discussed more broadly.

It is expected that some new revisions of this document will be published,
followed by a more complete and more formal specification of the proposed
format.

The most recent version of this document can be found at www.csdif.info. For a
revision history see chapter 4.

1.2 Community vs Citizen Science
The name of this proposal is “Community Science Data Interchange Format”.
This intentionally uses the name “Community Science” instead of the commonly
used “Citizen Science”.

We consider the name “Citizen Science” problematic because it emphasizes the
distinction between institutes and citizens. It is also often used for institutional
goals such as popularisation or participation. The name Community Science
instead emphasizes doing science collectively, where everyone is involved as
equal partners.

For more information, see also the Community Science Manifest.

1.3 Project and context
Many citizen science initiatives start as a one off effort to measure certain
quantities, e.g. climate or air quality. A straightforward way for doing this is to
design a piece of hardware that sends sensor data, and setup a database that is
tailor made for the data sent by the sensor.

CSDIF-001-RFC (revision 2, 2025-06-26)p3/37

https://meetjestad.net/en/Community_Science_Manifest
http://www.csdif.info/

An introduction tutorial on data collection will show something like the following
approach:

1. Measurement device firmware reads sensor and sends value periodically.

2. Server receives value and stores it in database together with a timestamp

3. Browser fetches time series data from server and displays it as a graph

This approach allows for rapid development of a working prototype and has the
advantage of simplicity and transparency between what is going on in the
measuring device, how data is stored in the database and eventually presented
to an end user.

In this way many initiatives get started and design their own measurement
devices, databases and web front ends.

However, this naive approach for setting up an initiative proves to be hard to
scale.

Over time more sensors are adopted and the handling of ever more quantities
has to be implemented in the firmware, transmission packets, database structure
and application interfaces. Every new measurement experiment requires
changes on all levels and the database becomes littered with empty fields not
used in most cases.

Furthermore, in order to compare and exchange data between various DIY
measuring initiatives and institutions a common language is needed to describe
data as well as the context in which they are gathered. The naive approach often,
applied in many initiatives, leaves this metadata implicit and inevitably lead to a
Babylonian confusion of tongues.

In short: both the setting up of new experiments and the analysis of data from
various sources are hampered by the same lack of a robust yet flexible data
framework.

In this document we lay out the result of an exploration of existing standards,
propose a practical subset to adopt for data interchange.

We will focus mainly on an interchange format which allows various initiatives to
make use of each others’ datasets. The underlying software stack, firmware and
protocols to actually collect these datasets is also relevant, but mostly left out of
scope of this particular proposal.

We intend to find a language which is both concise and sparse in topic language,
in order to keep the document relevant to both experts and beginners in
software or data science.

CSDIF-001-RFC (revision 2, 2025-06-26)p4/37

1.4 Existing infrastructure and limitations
At the time of the writing of this document different initiatives and organizations
use different ways to publish open data.

This data is often provided as downloadable (cold) data, and has a data schema
that differs from initiative to initiative.

In addition, a lot of context around the data is implicit. For example, Meet je Stad
keeps a “temperature” field in measurements, which refers to the temperature of
outside air, in degrees Celsius, typically measured using a Si7021 (or HTU21D
for older sensor stations). None of this context is explicit and it might not even
be true for all data.

The data can be consumed, but the receiver needs to put a lot of effort in
converting the data into a uniform format and making it comparable. In a lot of
cases essential metadata is not available at all (and maybe not even known for
certain anywhere).

1.5 Goals and usecases
The primary purpose of CSDIF is to make available data collected by reading
sensors and making observations. This intends to allow sharing data with:

• Other community science initiatives

• Institutional partners: universities, environment agencies, municipalities
etc.

CSDIF intends to support a wide range of data collection use cases, such as:

• Measurement station with a single sensor and a static location set by the
station maintainer.

• Measurement station with multiple different sensors, moved occasionally
with the location set by the station maintainer or based on periodic GPS
readings.

• Mobile measurement sensor, location can vary from one measurement to
the next (e.g. Meetjestad cityslam and Snuffelfiets).

• A measurement station that applies some calibration directly after reading
the sensor.

• A data collection backend that applies calibration centrally at a later time,
potentially based on analysis of a group of measurements.

CSDIF-001-RFC (revision 2, 2025-06-26)p5/37

• Measurements performed by human beings, such as periodic manual
measurement of tree circumference, or observations of first bloom of
plants.

CSDIF should offer measurement data along with relevant metadata that helps to
interpret the measurement data. The focus here is on ensuring the relevant
metadata is available or can be derived from other metadata. For example,
exposing metadata about measurement accuracy is convenient, but less
important than storing the type of sensor used to collect data, since the type of
sensor can be later used to derive the measurement accuracy based on external
documentation.

1.5.1 Non-goals

The scope of this document is to describe the interchange format that can be
used to share open data between initiatives and organizations. Such parties
collecting data can make their data available via this format, which can then be
imported or used by any third party.

Some things are left out of scope of this proposal (but might be reconsidered in a
future revision):

• Authentication and authorization: the data that is published is considered
to be open data that can be queried anonymously.

• Support for streaming data: transfer of data is always initiated by the
consumer of the data by bulk download or periodic polling.

• Fully automated data imports: ideally, importing data via CSDIF would be
as simple as adding a URL to a list of datasets to import, but in practice
some case-by-case setup might still be needed for each such dataset
imported (because different datasets have different amounts of metadata,
made different choices in representing metadata, etc).

• Using data for analysis and presentation directly: ideally, the CSDIF
interface can be used directly by tooling that can be used to analyse data
and present it (i.e. make maps and graphs), but fully supporting this would
increase the complexity of the API needed. Some implementations can
choose to support this, but CSDIF does not require this from all
implementations.

Initiatives are free to add any of these to their implementation (being careful to
keep their data meaningful for consumers that do not implement such extras),
but CSDIF will not provide any means to standardize them.

CSDIF-001-RFC (revision 2, 2025-06-26)p6/37

1.5.2 Metadata concepts

In order to depart from the intuitive approach of a single purpose measurement
and generalize these so that they become comparable we need to introduce a
number of concepts.

Number

Data is typically formatted as a number. However, to understand a number we
need to know its representation, precision, etc. Various standards can be chosen.
The scientific notation uses Arabic numbers written in a decimal form with
exponential notation. Adding a precision of 5 digits will yield something like
3.1415 × 100 for the value of π.

A number usually encodes for a physical phenomenon that is measured, and we
need to know the specific quantity and the unit to make sense of a number, e.g.
Temperature (the quantity) measured in degrees Celsius (the unit).

Observer

Data is the result of observations. This can be done by a human observer or by a
sensor, an electronic device of a certain brand and type, sometimes with a serial
number. When tools are being used for measuring they often need to be
calibrated.

All this information is needed to better understand data e.g. to be able to trace
down systematic measuring errors to their cause.

Method

In some cases a measurement is not a static affair but the result of a series of
actions, each of which have an influence on the resulting data.

Calibration procedures too are described such a way.

Knowing the methods for measurement and calibration is essential to be able to
replicate a certain result. These methods include also certain mathematical
operations on (raw) data, the specific calibration parameters that were used etc.

Environment

In some cases we want to know the further circumstances in which a
measurement or observation took place and that cannot be (entirely) controlled
with the applied methods. E.g. the soil type in or on top of which a sensor was
placed, its location, its orientation, its sun exposure directions, etc.

For each of above concepts standards exist, like the International System of
Units (SI).

CSDIF-001-RFC (revision 2, 2025-06-26)p7/37

2 Proposal: Interchange format
For this proposal we made an inventory of existing standards to adopt instead of
developing a completely new standard. Clear advantages are the possibility of
connecting to existing datasets (already in such a format), making use of existing
code for interpreting these data and being able to connect to, make use of and
contribute to the communities that maintain these standards, datasets and code
bases.

Many of the standards and systems we explored were either too simple
(insufficient metadata or insufficient flexibility for heterogeneous and changing
systems) or overly complex, imposing a steep learning curve only for the benefit
of exotic use cases.

The result of this exploration is to use (a subset of) the OGC SensorThings API
(STA) to offer read-only access to observation data (measurements), along with
metadata about the systems and sensors used to generate that data. This
metadata is encoded using (the JSON encoding of) the OGC Sensor Model
Language (SensorML).

SensorThings is part of the OGC Sensor Web Enablement collection of standards,
all of which share a similar base datamodel, some of which serve different
usecases or are more modern replacements of older ones. Of particular mention
is OGC API Connected Systems, a specification that is currently (mid 2025) being
finalized. It is positioned as a possible followup to SensorThings, having a bit
more clean, generic and complete API and data model. It was initially intended to
be the basis of the CSDIF proposal, but because the API and specification were
so generic and spread over different documents, they were also quite hard to
understand. Since this conflicts with the goal of having a low barrier to entry,
CSDIF now uses SensorThings instead. This poses some limitations (mostly in
more advanced usecases that are not part of CSDIF itself), but such limitations
also make the API more straightforward and accessible.

2.1 Approach
To prevent reinventing the wheel, this proposal builds on existing specifications.
However, those existing specifications are more expressive than we need (and
also can potentially express the same things in different ways). To prevent
consumers of CSDIF data having to handle a lot of needlessly diverse data,
CSDIF provides some additional restrictions and guidelines.

So, being compliant with CSDIF means:

CSDIF-001-RFC (revision 2, 2025-06-26)p8/37

1. Implementing the SensorThings API and data model (limited to the
requirements listed in this document).

2. Any metadata added is encoded using the SensorML format, encoded in
JSON, as shown in this document.

3. Where applicable, the SensorML descriptions use the vocabularies and
terms defined by this document.

Implementations can support additional SensorThings features or add additional
data (using SensorML or other formats, e.g. in the free-form “properties” field),
but must take care that the data is still meaningful if such additions are not
understood or supported.

2.1.1 Data model vs Access API

Conceptually, this proposal consists of two parts:

1. A data model for (meta)data, defining objects to store, what properties they
have, what values those properties can have, etc.

2. An access API that defines how to this (meta)data can be queried and
filtered and how the results are formatted.

To give some structure to this proposal, both parts are discussed separately, but
note that in practice, both parts are intertwined, especially in the existing
SensorThings API that CSDIF builds upon. This means that these parts cannot be
implemented independently, but it might be that in a future version of CSDIF (or
a separate, new, specification) the same data model could be used with a
different access API as well, preserving some degree of interoperability.

2.1.2 Simple and complex implementations

Since different initiatives have different platforms, skill levels and data
complexity, their (data producing) APIs might correspondingly vary.

To accommodate these different kinds of initiatives, some properties of simple or
more complex implementations are defined in this section. These are not
intended to be formalized in the interchange format itself (and are not strict
categories), but are made explicit here to make the intended range of supported
data producing applications more clear.

• A simple implementation might offer just observation data annotated with
an ObservedProperty and unit of measurement and a location, with
minimal information about the sensor (e.g. a reference to the datasheet
PDF), no metadata about the measurement station, etc.

CSDIF-001-RFC (revision 2, 2025-06-26)p9/37

• A simple implementation might support just one or a limited set of
measurement platforms. In this case, an implementation is still expected to
offer such metadata via the API (as opposed to leaving this implied), to
simplify data consumption and to make things explicit (but the metadata
could be hard-coded internally, either when the data is stored, or when it is
retrieved).

• A simple implementation can assume that a single measurement station (a
“thing” in SensorThings terms) never changes (except for its physical
location) and not deal with any validity time or other history provisions
(and just create a new thing with a new identifier if something ends up
changing anyway). A complex implementation could facilitate adding or
removing sensors, changing metadata, etc. on a thing and export this with
appropriate history.

• An implementation might add the SensorThings API endpoints onto an
existing data collection platform (generating or converting some metadata
on the fly) or might use an existing SensorThings data server. In the latter
case, this could be the primary storage, or it could be a secondary storage
intended just for publishing the data.

• A simple (or custom) implementation supports only very limited data
querying, while a complex (or off-the-shelf) implementation might support
complex queries and filtering.

It is to be determined if all of the above simple implementations should indeed be
supported (to favor simple data suppliers), or if the minimal complexity should be
raised (to favor simple data consumers), by e.g. requiring all sensors to have
SensorML metadata and never allow a datasheet PDF.

2.2 Underlying standards
CSDIF builds on top of various standards, which will be briefly introduced in this
section. How these standards relate to each other is indicated in Figure 1.

CSDIF-001-RFC (revision 2, 2025-06-26)p10/37

2.2.1 OGC Observations, Measurements & Samples (OMS)

“Observations, measurements & samples” (OMS, most recent version is
Observations, measurements and samples 3.0) is an OGC specification that
describes a conceptual data model for observational data. The model is
conceptual and intended as a building block for other specifications (such as
SensorThings and many other OGC specifications), in the sense that it does not
specify any particular storage or exchange protocol or format.

The specification was originally called “O&M” and is still referred to as such in
various places, but in recent versions the full title also has “& samples” added.

Section 7.1 of the specification gives a good overview of the concepts used and is
summarized here.

Features

Features are a generic concept (A tree, a forest, the outside air, a sensor, a
measurement procedure, etc). Features have properties that can be defined
specifically (by an authority, like names) or observed (by measuring, estimating)
with some error margin.

CSDIF-001-RFC (revision 2, 2025-06-26)p11/37

Figure 1: Overview of standards used by CSDIF

https://docs.ogc.org/as/20-082r4/20-082r4.html

Observations

An observation is the act of observing a property at a specific time instant or
over a period, to find a numeric value or other characterization for the property.
An observation can be done automatically with a sensor, but also manually
following some kind of procedure, with or without instruments, on-site or in a
lab, etc.

Measurements

A measurement is an observation that assigns a numerical value to a property.

Values

Values can be simple numerical values, counts or categories, but also more
complex values such as timestamps or ranges, location, geometries, etc.

Location

OMS does not assign a location to an observation directly, since this is not a
property that is necessarily known, relevant or even sensical. Location
information can be modeled as a property of the feature of interest, or provided
by the observation procedure.

Time

In contrast, temporal data (when was the observation performed) is a direct
property of every observation in the OMS model.

Other concepts

An observation can be further decomposed into its feature of interest, its
observer (a sensor, chain of measurements, simulation, person, etc.), the
observed property, the observation procedure and the value. In some cases, a
distinction can be made between the ultimate-feature-of-interest (what are you
trying to observe) and a proximate-feature-of-interest (what are you actually
observing).

Sections 7.2 and 7.3 add the concept of sampling, where observations are made
of a subset of (or proxy for) the actual feature of interest.

2.2.2 OASIS OData

OData (latest version OData v4.0) defines how to structure a REST/HTTP service.
It defines HTTP URL conventions, headers, response codes and JSON formats for
requesting, modifying and filtering objects, their properties and their relations.

CSDIF-001-RFC (revision 2, 2025-06-26)p12/37

https://www.oasis-open.org/standard/odatav4-0/

The SensorThings specification takes some concepts from OData, but is not fully
compliant. In practice, the SensorThings specification document repeats the
relevant parts from OData and should be readable without referring to the OData
specification at all.

2.2.3 OGC SensorThings API (STA)

The SensorThings API (STA, full name “OGC SensorThings API Part 1: Sensing
Version 1.1”) is an API specification to expose observations and information
about the observers that made these observations.

There is also a second part (OGC SensorThings API Part 2: Tasking Core) to
allow executing tasks (i.e. control actuators), which is not used at all for CSDIF
(so references to SensorThings or STA in this document usually mean part 1).

The specification builds on top of other specifications: Observations,
Measurements and samples (OMS, originally “Observations & Measurements”)
for the objects and their relations, OASIS OData v4.0 for the REST/HTTP API
structure, OGC SensorML Encoding Standard v3.0 for the encoding of metadata
about some of the objects.

In the SensorThings data model, a number of objects are defined, which are
listed in the next sections. Because the names of these objects (like “thing”) are
also regularly used in other contexts, we will use italics and capitalization (like
Thing) to indicate when a word refers to an object defined by SensorThings.

An overview of these objects, their relations and attributes is provided in Figure
2. It contains extra detail for those familiar with such diagrams, but is not
needed for the understanding of this document.

Observation objects

An Observation models an observation. This is usually quantitative (also referred
to as a “measurement” in other contexts), but could also include more qualitative
observations (such as a categorization or textual description). An Observation is
always made at a particular moment in time and observes a phenomenon at a
particular (potentially different) moment in time.

An Observation often contains one value, but can also contain a composite value
(e.g. latitude/longitude or another sensor that measures multiple values).

An Observation also has an optional FeatureOfInterest (the place or thing that is
being observed, typically a location or area) and (via its Datastream) a
ObservedProperty (the property of the feature of interest that has been
observed, like air temperature or particulate matter concentration).

CSDIF-001-RFC (revision 2, 2025-06-26)p13/37

https://docs.ogc.org/DRAFTS/23-000.html
https://www.oasis-open.org/standard/odatav4-0/
https://docs.ogc.org/as/20-082r4/20-082r4.html
https://docs.ogc.org/as/20-082r4/20-082r4.html
https://docs.ogc.org/is/18-088/18-088.html
https://docs.ogc.org/is/18-088/18-088.html

Datastream and MultiDatastream objects

A Datastream models a series of observations made by a single sensor, but at
different moments in time. A MultiDatastream is the same, but containing multi-
valued observations.

Sensor objects

A Sensor models an instrument that can make observations, producing a single
(Multi)Datastream.

Each Sensor has associated metadata, which can take various forms, such as the
make and model of the sensor, a link to its datasheet, a structured description of
various characteristics and capabilities, a textual description of steps taken
(useful for manually executed observations), etc.

For simple deployments, a composite measurement device can be represented as
a single Sensor object (producing multi-valued Observations), for more detail it
can also be split in multiple Sensor objects each representing a single
measurement instrument or module.

A Sensor corresponds to the “Procedure” concept in the underlying OMS
standard. Note that SensorThings leaves it undefined whether a sensor refers to
a type of sensor, or a specific sensor (instance).

CSDIF-001-RFC (revision 2, 2025-06-26)p14/37

Thing objects

A Thing models a physical or virtual thing as meant in “the internet of things”. It
is a very generic concept, but in our context typically means something that
produces Datastreams with observations using Sensors. This would typically be a
measurement device, but could also model for example a human making notes.

A thing also has an optional Location (and can keep a history of
HistoricalLocations).

Object attributes

SensorThings defines a number of attributes for each of its objects, but this is a
limited and fixed list of attributes (except for the “properties” attribute which is
a free-form JSON object property that can be used for implementation-defined
additional properties).

For Sensor objects, a free-form “metadata” attribute is available for expressing
metadata in some externally defined format (with the “encodingType” attribute

CSDIF-001-RFC (revision 2, 2025-06-26)p15/37

Figure 2: SensorThings data model (image taken from STA v1.1, ©2021 OGC)

defining what format is used). SensorThings recommends storing a SensorML
description in this field, which can be used to store any number of metadata
attributes about these sensors.

API Endpoints

Each of the objects defined above has a corresponding HTTP endpoint (e.g.
/Things({id}) to access a specific thing), typically a list endpoint (e.g. /Things
to get all known things, optionally filtered using query parameters) and can often
also be accessed indirectly (e.g. /Things({id})/Datastreams to get all
datastreams of a given thing).

The content of these endpoints is a description of the object and its attributes in
JSON format.

2.2.4 OGC Sensor Model Language (SensorML)

SensorML is a language to model observatory systems, their properties and
structure.

A SensorML description of a system can be serialized into an XML or JSON
document, which can then be stored in for example the “metadata” attribute of a
SensorThings Sensor object.

SensorML defines a hierarchical data model, of which CSDIF will use only the
“AbstractProcess” class and its subclasses. Each of these has properties like
identification, classification, capabilities, contacts, inputs and outputs. Each of its
subclasses define extra properties. These are roughly divided into two groups:

1. AbstractPhysicalProcess, PhysicalComponent and PhysicalSystem, for
defining processes that have a physical representation (measurement
stations, sensors, etc.). These classes add properties like position, temporal
and positional reference frames and subcomponents.

2. SimpleProcess and AggregateProcess for defining non-physical processes,
typically computations (possibly as a subcomponent of a composite
PhysicalSystem).

In CSDIF, SensorML descriptions are used to describe thing and sensor objects.

To describe objects, SensorML takes a generic approach. For example, the
specification defines an “identifiers” property, which is a list of properties that
help identify the object. For a sensor, this could be the manufacturer and model
number of the sensor. The SensorML specification, however, does not define
what identification properties are available, but instead relies on external
ontologies (vocabularies) of possible properties.

CSDIF-001-RFC (revision 2, 2025-06-26)p16/37

As an example, a sensor description could contain:

"identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer Name",
 "value": "Sensirion"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "value": "SPS30"
 }
]

This defines two properties, which point to an external definition using a URI to
define these properties. This allows relying on existing systems (i.e. DNS and
HTTP) to handle allocation and uniqueness of these identifiers. Additionally,
these URIs typically point to a webpage that contains (human or machine-
readable) information of what the property means. In this case, the information
is very consise (http://sensorml.com/ont/swe/property/Manufacturer says the
property should contain “The organization responsible for building the system.”),
but such a webpage could contain a more precise definition of a property as well,
possibly also providing (or referencing) a list of possible values (for example
country codes) or a format (for example a time format).

Other properties are more precisely defined in the SensorML specification
(sometimes building on top of other standards, such as ISO19115 for contacts
and legalConstraints), or just simple values. Some properties are also more open
ended, such as characteristics and capabilities, for which a bit of structure is
defined by SensorML, but the actual value uses the generic SWE Common
dataformat, requiring external agreement on what these values (which is
something this proposal will provide in a future revision).

SensorML was originally specified to use an XML representation, but the
(currently in development) version 3.0 of SensorML replaces that with a JSON
representation instead (while keeping the underlying datamodel the same). For
CSDIF, the draft version of the 3.0 JSON representation will be used.

2.3 CSDIF Example
To get an idea of the exchange format proposed, an example is first presented.
The example is not explained in detail, but serves as a first impression to also
make the upcoming sections with explanations a bit more tangible.

CSDIF-001-RFC (revision 2, 2025-06-26)p17/37

http://sensorml.com/ont/swe/property/Manufacturer

The example shown here is MJS2020 measurement station number 2000, which
is a single board containing a number of sensors. For simplicity, this example
only shows the Si7021 sensor attached to the board, omitting other sensors.

The station is modeled as a Thing, which has a single Datastream containing
values produced by the Si7021 Sensor. The main JSON structure is specified by
the SensorThings API specification, while the “metadata” fields contain
information about the station and sensor according to the SensorML
specification.

To query information about this station, one might make an HTTP GET request to
a URL like:

https://sta.example.org/v1.1/Things(2)?$expand=MultiDatastreams,MultiDatastreams/
Sensor,MultiDatastreams/ObservedProperties

This requests metadata on the measurement station (modeled as a Thing in
SensorThings) with ID 2, and includes (expands) any related MultiDatastream
objects, plus any Sensor and ObservedProperty objects related to those
MultiDatastreams.

The result would be a JSON-formatted response like below. The structure of this
response is defined by SensorThings, except for the parts marked in purple
which are defined by SensorML.

{
 "name": "station-2000",
 "description": "MJS2020 station built for MJS Amersfoort",
 "properties": {
 "encodingType": "application/vnd.ogc.sml+json",
 "metadata": {
 "type": "PhysicalSystem",
 "definition": "http://www.w3.org/ns/sosa/System",
 "uniqueId": "urn:fdc:meetjestad.nl:2024:thing:station-2000",
 "label": "MJS2020 station built for MJS Amersfoort",
 "validTime": [
 "2025-02-28T22:30:21.428175812Z",
 "now"
],
 "identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer Name",
 "value": "Meet je stad"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "value": "MJS2020"
 },
 {

CSDIF-001-RFC (revision 2, 2025-06-26)p18/37

 "definition": "http://sensorml.com/ont/swe/property/SerialNumber",
 "label": "Serial Number",
 "value": "2000"
 }
]
 }
 },
 "MultiDatastreams": [
 {
 "name": "Si7021 temperature and humidity data",
 "description": "",
 "observationType":
"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ComplexObservation",
 "multiObservationDataTypes": [
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement"
],
 "unitOfMeasurements": [
 {
 "name": "Degree Celcius",
 "symbol": "°C",
 "definition": "ucum:Cel"
 },
 {
 "name": "Percent RH",
 "symbol": "%",
 "definition": "ucum:%"
 }
],
 "Sensor": {
 "name": "Si7021",
 "description": "Si7021 temperature and humidity sensor",
 "encodingType": "application/vnd.ogc.sml+json",
 "metadata": {
 "type": "PhysicalComponent",
 "uniqueId": "urn:uuid:72cdcb94-86ae-4513-aada-3cf4d297aa52",
 "definition": "http://www.w3.org/ns/sosa/Sensor",
 "label": "Si7021 Temperature/Humidity Sensor",
 "identifiers": [
 {
 "definition": "http://sensorml.com/ont/swe/property/Manufacturer",
 "label": "Manufacturer Name",
 "value": "Silicon Labs"
 },
 {
 "definition": "http://sensorml.com/ont/swe/property/ModelNumber",
 "label": "Model Number",
 "value": "Si7021"
 }
]
 }
 },
 "ObservedProperties": [
 {
 "name": "temperature",
 "definition": "http://qudt.org/vocab/quantitykind/Temperature",
 "description": "Temperature"

CSDIF-001-RFC (revision 2, 2025-06-26)p19/37

 },
 {
 "name": "humidity",
 "definition": "http://qudt.org/vocab/quantitykind/RelativeHumidity",
 "description": "Humidity"
 }
]
 }
]
}

To actually get the data (Observations) for one of the Datastreams of this station,
one could make an HTTP GET request to:

https://sta.example.org/v1.1/MultiDatastreams(1)/Observations

Which would result in:

{
 "value": [
 {
 "@iot.selfLink": "https://sta.example.org/v1.1/Observations(1)",
 "@iot.id": 1,
 "phenomenonTime": "2019-03-14T10:00:00Z",
 "resultTime": "2019-03-14T10:00:00Z",
 "result": [21.0, 30.3],
 "Datastream@iot.navigationLink":
"https://sta.example.org/v1.1/Observations(1)/Datastream",
 "FeatureOfInterest@iot.navigationLink":
"https://sta.example.org/v1.1/Observations(1)/FeatureOfInterest"
 },
 {
 "@iot.selfLink": "https://sta.example.org/v1.1/Observations(2)",
 "@iot.id": 2,
 "phenomenonTime": "2019-03-14T10:01:00Z",
 "resultTime": "2019-03-14T10:01:00Z",
 "result": [21.6, 28.9],
 "Datastream@iot.navigationLink":
"https://sta.example.org/v1.1/Observations(2)/Datastream",
 "FeatureOfInterest@iot.navigationLink":
"https://sta.example.org/v1.1/Observations(2)/FeatureOfInterest"
 }
]
}

2.4 Data model

2.4.1 Objects from SensorThings

In CSDIF, the object model from SensorThings is used (again, object names in
italic refer to the corresponding objects in the SensorThings specification):

CSDIF-001-RFC (revision 2, 2025-06-26)p20/37

• A Thing refers to a measurement station that collects measurements (and
typically transfers them to a central location). It has a Location and
optionally HistoricalLocations to store its position.

• A MultiDatastream refers to a collection of multi-valued Observations
(measurements) produced by a specific instance, using a given type of
Sensor collected by a given Thing observing one or more
ObservedProperties. For simplicity, the Datastream object is not used,
modeling single-valued observations as a MultiDatastream containing (a
list of) just one value instead.

• A Sensor refers to the type of sensor (so multiple MultiDatastreams can
refer to the same Sensor object if they both use the same type of sensor).

The attributes of these objects are used as defined by the SensorThings
specification, with the following additions:

• For metadata on Things and Sensors (“metadata”, “encodingType” and
“properties” attributes), SensorML content is used, as described below.

• For locations (“location”, “feature” and “encodingType” attributes on
Location and FeatureOfInterest objects), CSDIF follows SensorThings by
using GeoJSON.

• For the ObservedProperty “definition” attribute and MultiDatastream
“unitOfMeasurements” attribute, external ontologies are used, as
described below.

• The “description” attribute on all objects can be empty (In SensorThings
1.1 the “description” attribute is required, but since a value is often
redundant with the name or other properties, CSDIF explicitly allows it to
be empty, looking forward to SensorThings 2.0 that is expected to make it
optional).

2.4.2 Metadata using SensorML

Since SensorML is very expressive, some specific guidance will be defined in the
final CSDIF proposal. In particular:

• What properties should be minimally defined, and (where appropriate)
which definition URLs to use for them. This ensures that most data will
have a minimal set of interchangeable metadata. This includes things like
make and model for things and sensors.

CSDIF-001-RFC (revision 2, 2025-06-26)p21/37

• What properties and other structures to use for other common metadata.
This ensures that if two implementations define the same thing, they will
also use the same property and values.

• What parts of SensorML are not expected to be used (so compliant
implementations can ignore them).

• What SensorML class to use for which object and which usecase.

2.4.3 Ontologies

Both SensorThings and SensorML use URLs for defining various properties and
values, which allows relying on terms from external ontologies (repositories
describing related concepts and terms and assigning a unique identifier to each).

To ensure interoperability, compliant implementations should ideally use the
same terms. To facilitate this, the CSDIF specification will recommend particular
ontologies to use, and for specific concepts recommend one specific term to use.

The ontologies that will be used for this are likely at least:

• http://sensorml.com/ont/swe/property for various thing and sensor
metadata properties.

• https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html for
observed properties (quantities).

• https://ucum.org/ (or https://www.qudt.org/doc/DOC_VOCAB-UNITS.html)
for units of measurement.

Where possible, alternative ontologies can also be referenced to establish which
terms (from different ontologies) can be considered interchangeable. This could
be done by explicitly listing terms, or referring to external lists (e.g. qudt.org
already lists the matching ucum.org identifiers for its units where appropriate).

2.4.4 Identifiers

In SensorThings, every object has a single (local) identifier, which is an identifier
that is local to the server using it and is unique only among all objects of the
same type on the same server. No provisions are made to guarantee uniqueness
across different servers and object types. This is the identifier that is used in the
API endpoints.

SensorThings has no provision for a globally unique identifier on any of its
objects. However, to simplify tracking objects across servers when data is
exchanged, it is helpful if such a unique identifier is available.

CSDIF-001-RFC (revision 2, 2025-06-26)p22/37

https://www.qudt.org/doc/DOC_VOCAB-UNITS.html
https://ucum.org/
https://www.qudt.org/doc/DOC_VOCAB-QUANTITY-KINDS.html
http://sensorml.com/ont/swe/property

Things and Sensors are described with SensorML metadata. In SensorML there
is a mandatory “uniqueID” property (defined by the draft SensorML v3.0, section
9.1.4.1 “Unique Identifier”) which would be convenient to use for this purpose.
SensorML defines this to be URI (uniform resource identifier) that is globally
unique and suggests it to be a URN (uniform resource name, which is a specific
kind of URI using the “urn:” scheme). Some examples are given below.

CSDIF follows SensorML (and also Connected Systems) and requires every
Thing and Sensor to have a globally unique identifier, which is stored as part of
the SensorML metadata. Whenever possible, the same identifier should be used
on all representations of the same physical object, but it is acceptable if multiple
identifiers are used for the same physical object (This can happen in simple
implementations that do not track history but instead assign a new identifier
when an object changes, or when multiple servers/organizations each assign
their own unique id for the same physical object). It is not acceptable for the
same identifier to be used to represent different physical objects, not even on
different servers.

Note that it is possible for the same (global) identifier to be used with multiple
(server) objects (with different local identifiers), with non-overlapping
“validTime” properties, when representing the history of a single physical object
that changed over time (see also the section on history).

Unique identifier for observations

As shown above, Things and Sensors have a unique identifier assigned (stored in
their SensorML-encoded metadata). However, Datastreams and Observations
have no SensorML metadata, so only have local identifiers.

This means that if data is synchronized from one server to the other, there is no
easily available stable identifier to correlate them.

For Datastreams, this could be fixed by storing a unique identifier in its free-form
“properties” field, but an Observation only has a “parameters” field which is free-
form, but intended for process parameters used for this particular Observation).

In case such an identifier is needed, CSDIF could recommend to compose one
made from the Thing unique identifier, Datastream name and the Observation
phenomenonTime, which should together uniquely identify the Observation.
Alternatively, the Sensor uniqueId could be used with the timestamp (if the
sensor represents a sensor instance, not type).

A future revision will make this recommendation more specific.

CSDIF-001-RFC (revision 2, 2025-06-26)p23/37

https://docs.ogc.org/DRAFTS/23-000.html#_unique_identifier
https://docs.ogc.org/DRAFTS/23-000.html#_unique_identifier

Generating unique identifiers

For the unique identifiers, SensorML requires using a Unique Resource Identifier
(URI), and recommends using a Unique Resource Name (URN, which is a
particular kind of URI). Such a name consists of a scheme, a colon and then a
string whose structure depends on the schema.

There are a lot of different URN schemes defined, the IANA organization keeps
of list of them here. Each of these schemes defines its own rules to ensure that
any URN generated is unique (usually by referring to some existing external
registry of names to identify an organization, that can then assign its own
identifiers below that).

For data exchange with CSDIF, any URI can be used (as long as uniqueness is
guaranteed, for example by using a URI that includes a DNS-derived name
owned by the organization that generates the identifiers).

It is suggested that implementers use:

• The “fdc” URN scheme (defined in RFC4198), which is intended for
“federated communities” where data is produced by different organizations
and is shared. An example of such a URN would be
“urn:fdc:example.org:2025:system/2000”. This consists of the “urn:fdc:”
prefix, then a dns name controlled by the organization defining the
identifiers, then a date (just a year in this case) on which the identifier
scheme was established, followed by an arbitrary identifier. In this
example, that identifier again follows a nested structure using a type and a
system number, but any scheme that allows the organization to generate
unique and stable identifiers works.

• The “uuid” URN scheme (defined in RFC9562) builds on the concept of the
Universally Unique Identifier (UUID), which are generated from (a
combination of) random numbers (big enough to assume uniqueness),
timestamps, MAC addresses or hashes from other identifiers.

2.4.5 Storing Metadata

In SensorThings, a Sensor object has a “metadata” property that can store info
about the Sensor. The “encodingType” property indicates the type of metadata
stored. Defined values are pdf, html and sensorML (the 2.0 XML version), but
other values are also allowed.

The “metadata” field is typically a URL to the metadata document (e.g. for a
PDF), but is also allowed to contain the metadata content itself (if it is

CSDIF-001-RFC (revision 2, 2025-06-26)p24/37

https://www.rfc-editor.org/rfc/rfc9562.html
https://www.rfc-editor.org/rfc/rfc4198.html
https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml

representable as JSON). See also OGC SensorThings API Part 1: Sensing Version
1.1, section 8.2.5.

This means that the newer SensorML JSON encoding can be used to store the
SensorML metadata directly in the “metadata” field, as shown in the earlier
example. For the “encodingType” the value “application/vnd.ogc.sml+json”
should be used while the SensorML 3.0 specification is still in draft, switching to
“application/sml+json” once the specification is final.

In SensorThings, a Thing does not have a metadata property. Since metadata
might also be relevant for a thing (even though it might be less important), it can
still be stored using the free-form “properties” field that SensorThings defines. In
CSDIF, the “metadata” and “encodingType” fields of are defined as fields below
the “properties” field of Thing, with the same meaning as the same fields defined
for Sensor.

2.5 Access API
The access API for CSDIF is as defined by the SensorThings base specification
(omitting all extensions, like Create/Update/Delete, Batch Requests and MQTT).

See the example at the start of this chapter for an initial example of the API, see
the SensorThings specification for more details.

2.5.1 Query options

The SensorThings specification defines a “$filter” query parameter on all
endpoints that allows extensive filtering options, including basic comparisons,
some arithmetic, string processing or spatial comparisons using object attributes
(see paragraph 9.3.3.5 of the SensorThings specification). Implementing all these
query options would would be challenging when not using an existing
SensorThings implementation. If possible, implementations should implement
this, but to allow adding the SensorThings API on top of existing systems, this is
optional.

If it turns out that some subset of these query options should be supported to
allow practical data exchange, such a reduced set might be added as required in
a future version.

CSDIF-001-RFC (revision 2, 2025-06-26)p25/37

https://docs.ogc.org/is/18-088/18-088.html#filter
https://docs.ogc.org/is/18-088/18-088.html#tab-encodingtypes-sensor
https://docs.ogc.org/is/18-088/18-088.html#tab-encodingtypes-sensor

2.6 Other considerations

2.6.1 History of Things

Over time, a Thing might be modified, which results in its metadata or its
collection of associated Sensors changing. To ensure that each Observation can
be linked to the appropriate metadata at the time of observation, multiple
versions of the same Thing can exist. Each version has the same unique identifier
(in the SensorML metadata), but a different local resource identifier (so a
different URL). Each version also specifies a different (non-overlapping)
validTime property (in the SensorML metadata).

For consumers that do not care about Thing history and just want the
observations, this looks like the Thing that was measuring is removed and
replaced by a new Thing that measures something (possibly) different.

Consumers that do care about correlating measurements coming from the same
station, can link multiple versions of the same Thing based on their unique
identifier.

As a special case, when the location of a Thing changes, but no other metadata,
this should be recorded using the SensorThings HistoricalLocation objects
(which essentially links a thing to its previous Locations, annotated with the time
until that previous Location was applicable).

Of particular note is that it is possible (and likely will happen in practice) that a
modification of a Thing (or its location) is recorded after the fact, by simply using
an older timestamp for the validTime or HistoricalLocation timestamp. This could
result in data consumers already having applied the old metadata to later data
where it was not applicable. Consumers should keep this in mind, and possibly
periodically recheck the validity of existing things and locations and update or
re-import their data accordingly.

2.6.2 Thing location

In SensorThings, each Thing has an associated Location (plus a history of
previous Locations). Whenever possible, these should be set to reflect the
position of the Thing.

When such a position is manually configured, filling these fields is obvious.

For Things that contain a GPS or similar localization device, it is recommended
that the output of such as a device is modeled as a separate Datastream to allow
access to the raw location output as sent by the device. In addition, such data
can be used (possibly combined with other data sources such as manual

CSDIF-001-RFC (revision 2, 2025-06-26)p26/37

configuration or correction by a user) to fill the Thing location field. In the most
simple approach, the GPS location is put into the Thing Location directly. This
could result in a lot of Location changes (i.e. GPS noise that does not correspond
to location changes in the real world), so for some implementations is could be
better to consolidate multiple nearby locations (maybe taking into account the
position fix accuracy info) into a single Location (and/or just not changing the
Location when a new Observation is very close by).

It would be useful if the Location of a Thing would be annotated with its source
(and possibly other metadata like accuracy). It seems that the GeoJSON
specification that is used for Locations does not define such properties, but does
allow additional properties to be added. The final CSDIF proposal could define
such properties.

In addition, an Observation can have a FeatureOfInterest, which (when omitted)
defaults to the Location of the Thing (at the time of the Observation). This can be
useful when the FeatureOfInterest is not identical to the Thing location (such as
a camera looking out over a wider area), or when no Location is stored for a
Thing (which could be chosen for mobile systems where you would otherwise
create many HistoricalLocations).

2.6.3 Coordinate reference frames

A Location (which can be a Thing’s Location, or some measured position) is
always measured in a particular frame of reference, that indicates how to
interpret the Location value (coordinates).

For the Thing’s Location, SensorThings refers to GeoJSON to specify the
location. In GeoJSON, the coordiate reference system is always implicitly WGS84
(GPS), which is also applied to CSDIF. If any implementation ever needs to use a
different system (and cannot convert to WGS84), it must use a different content
type than GeoJSON (which will break CSDIF compatibility, which is better than
silently misinterpreting data).

For Datastreams containing location data, GeoJSON is not applicable (instead
one would typically use a MultiDatastream with latitude, longitude and altitude
fields). This does not allow direct annotation with a reference system, but this
could likely be done in the SensorML description of the associated Sensor. It is to
be considered if such an annotation needs to be declared mandatory by CSDIF,
or if coordinates should be assumed to be WGS84 (which would mean using any
other system could still be annotated, but would be silently misinterpreted by
consumers that do not support such annotation).

CSDIF-001-RFC (revision 2, 2025-06-26)p27/37

Note that SensorThings 2.0 (as well as Connected Systems) is expected to use
SWE Common encoding for values, which requires explicit annotation of a
reference frame on all coordinate (vector) values, so maybe adopting such an
approach might also be feasible.

2.6.4 Data modified for privacy reasons

For some usecases, the data that is published might be modified for privacy
reasons (e.g. reducing location accuracy). If this is done, this should be somehow
noted in the metadata so a data consumer can detect his, but it must still be
determined what properties can be used for this (or maybe this must be modeled
as a composite system with processing applied to the sensor output? But how
about the Thing’s Location?).

2.6.5 Timestamp precision

When embedded devices are involved in generating timestamps for
measurements, these might not be as accurate as timestamps generated by time-
synchronized internet-connected systems. It would be useful if the accuracy of
observation timestamps can be specified, so applications that need to correlate
multiple readings can do so with more confidence.

It is to be determined how to specify this. One option would be to specify clock
accuracy as a property of the Thing or Sensor, or model the clock as a
component of the Thing or Sensor and annotate that accordingly. However, in
some cases, the accuracy might not be the same between all Observations by a
single Thing or Sensor (i.e. the clock synchronization of a Thing might be
improved over time, or when measurements are queued to be sent in a bundle,
an observation timestamps could be a combination of an accurate “receive time”
combined with different inaccurate “measured X ago” intervals). In such cases,
the annotation might need to happen on each Observation separately.

2.6.6 Data ownership and licensing

The use of data is subject to various legal restrictions. This proposal is intended
to be used for “open data”, but that is still a diverse concept that does not mean
data is free of any restrictions.

To allow reuse of such data, a license should be applied to it. This makes it
explicit to consumers what is allowed with the data (e.g. use, redistribute,
modify, etc.) and under what conditions (e.g. by providing credit).

In implementations where all data is made available by a single party under the
same license, that license could be communicated out-of-band (e.g. on the

CSDIF-001-RFC (revision 2, 2025-06-26)p28/37

website linking to the data). However, it is recommended to always add a license
in-band, as part of the exposed metadata to ensure the license is always up-to-
date. This is especially important when data from multiple sources is aggregated.

For annotating license info, the STAPlus specification can be used. This defines
an additional License object (with properties like license name/definition, logo
and attribution text) that can be associated with a Datastream to attach a license
to all Observations in that Datastream.

Alternatively (e.g. if STAPlus turns out to be not well-supported by existing
implementations), the attributes defined by the STAPlus License object could
also be stored in the “properties” field of a Datastream (resulting in some
duplication of content).

Note that SensorML also has a “legalconstraints” property (referencing pay-to-
view ISO19115, see this workbook for some public info about that), which could
be used to model constraints on data usage, but its values are a not well-defined,
and also the scope (i.e. do the constraints apply to the thing metadata, or to the
observations produced by it) is not very explicit. This means these
legalconstraints are probably not useful here.

A related concept is that of data ownership, which is also often mentioned in the
context of citizen and community science data. However, the legal status of data
owership is not very well-defined. STAPlus defines a Party object as the owner for
Things and Datastreams, but also does not clearly define its meaning (in
examples it is used for both authorizing write access to the data and for
documenting the origin of data). For this reason, the STAPlus Party concept is
probably best left alone. If registration of some sort of data ownership is needed,
it should be made very specific what such ownership actually means (e.g. user
who owns or operates the data generating hardware, initiative that collected that
data, party that has particular rights to the data, party that offers the license,
etc.).

2.6.7 Object names, labels and descriptions

In various places, objects can have a name, description and/or label. All of these
are intended to be human-readable strings with varying levels of details. Using
all of them can lead to some duplication in the data.

For example, a Sensor has a “name” and “description” attribute (as defined by
SensorThings), but the associated SensorML metadata also has a (mandatory)
“label” attribute that will typically encode the same thing as either the “name” or
“description”. It might make sense to leave the “label” empty (omitting it would
violate the SensorML spec) and mandate that the “description” should be used

CSDIF-001-RFC (revision 2, 2025-06-26)p29/37

https://data.europa.eu/sites/default/files/report/What%20is%20data%20ownership%2C%20and%20does%20it%20still%20matter%20under%20EU%20data%20law.pdf
https://www.ncei.noaa.gov/sites/default/files/2020-04/ISO%2019115-2%20Workbook_Part%20II%20Extentions%20for%20imagery%20and%20Gridded%20Data.pdf

instead. However, for usecases where existing software is used to work with the
SensorML description, which might not be aware of SensorThings and/or CSDIF,
it might be beneficial to preserve this duplication to make the SensorML
description self-contained.

Additionally, the “name” and “description” properties are very similar, so CSDIF
explicitly allows the description to be empty. An implementation might not even
have a meaningful human-readable name configured for every Sensor, but then it
should probably generate one anyway (for example based on other properties it
has, such as model name), so consumers can just use the name to display the
data to a user.

2.6.8 SensorThings 2.0

At the time this document was prepared, the OGC is also working on an updated
2.0 version of the SensorThings specification. It is not expected to be finished in
time to be usable for CSDIF initially, but it a future revision of CSDIF might
switch to using it.

Notable changes that are planned are:

• Description field is made optional everywhere. A description is not always
available, especially when data is generated and collected automatically. In
the current version, this can already be achieved by allowing the
description to be empty.

• Observation values are encoded using datastructures from the SWE
Common standard (another standard published by the OGC), which are
more expressive than the limited set of datatypes supported by
SensorThings 1.1. Since SWE Common can encode (among others)
datarecords or scalar values, this allows merging DataStream and
MultiDataStream into a single object, which is also simpler by using SWE
Common to describe the value type (which integrates the structure,
observed properties and units of measurement into a single nested
structure).
In theory, using this SWE Common encoding for values can already be
done, but this would break strict compatibility with SensorThings 1.1 (by
using more complex representations for values than specified, and omitting
the regular observed property and unit of measurement definition).

2.6.9 SensorThings requirement classes

The SensorThings API consists of multiple parts, has some extensions and is
further divided into requirement classes that contain specific requirements.

CSDIF-001-RFC (revision 2, 2025-06-26)p30/37

The CSDIF specification is based on SensorThings API Part 1: Sensing version
1.1. In section 2 of the standard specification, a number of “requirements
classes” are defined to allow partially conforming implementations and
extensions. All requirements classes defined there are mandatory except:

• Query options (req/request-data/filter and its dependencies), which defines
extensive query and filtering options, but would be challenging to
implement when not using an existing SensorThings implementation. If
possible, implementations should implement this, but to also allow adding
the SensorThings API on top of existing systems, this is optional.

• Creating, updating, and deleting entities (req/create-update-delete), which
defines how to modify data. The focus of CSDIF is offering read-only access
to data for data exchange. Implementation that want to also support
receiving data pushed by other parties are encouraged to implement this
requirement, but should then separately advertise, negotiate and authorize
such write access.

• Processing multiple requests with a single request (req/batch-request),
which defines ways to pack multiple requests in a single request to simplify
things for resource-constrained devices. Since the intended uses of CSDIF
should have no issues making multiple HTTP requests, this is left out to
keep the API simpler.

• Data array extension (req/data-array), which is a more resource-efficient
way to encode observations. If possible, this should be implemented, but
consumers should be prepared to fall back to accept the basic one-
observation-per-JSON-object encoding.

• Sensing MQTT extension (req/create-observations-via-mqtt and
req/receive-updates-via-mqtt), which defines ways to publish observations
and subscribe to updates to various objects via MQTT. This might be a
useful addition to facilitate streaming data exchange, but is not mandatory.

In addition, the Sensor Things API Part 2: Tasking core, which allows sending
commands to Things, is left out of scope for CSDIF.

2.7 Open questions
This section lists some significant questions that are still unanswered, in addition
to some of the smaller questions posed in the rest of this document (most of them
in the “Other Considerations” section).

CSDIF-001-RFC (revision 2, 2025-06-26)p31/37

https://docs.ogc.org/is/18-088/18-088.html#conformance

Answering these questions requires both more research into the SensorThings
and SensorML capabilities, as well as a better view of the requirements.

• Can a single Sensor model a complex system? SensorML can support this
by defining a system with subcomponents, each with their own properties.
Should we forbid this (require splitting into multiple Sensor objects which
is harder to publish but easier to consume)? Or is it sometimes necessary
to express relations between components (for calibration steps, accuracy
reduction due to intermediate processing, values derived from multiple
sensor values, etc.).

• How to annotate calibrated data? Separate Datastream? Sensor with
SensorML subcomponents that process the output of the sensor?

• Do Datastreams (and/or elements of a MultiDatastream) need some kind of
machine-readable name (could be useful when storing multiple related
Observations in an object, then each property needs a name). What should
the name of a Datastream be? Something machine-readable to correspond
with a SensorML output name? Should it be unique among a Thing’s
Datastream?

• Can we add per-output metadata (e.g. on accuracy?) in sensorML? These
are identified by name, but items in a MultiDatastream do not have names?
Or do we need to add SensorML metadata to a Datastream?

• SensorThings 2.0 uses SWE Common for modeling Observation values (and
possibly other things), which makes values a bit more expressive (in
particular allows datarecords and vectors). Should/could we add a
convention to do that here already (keeping in mind compatibility with
existing implementations)?

• Can we encode measurement accuracy/precision/granularity in the
SensorML metadata? Also for timestamp accuracy?

• Should CSDIF define a (living) list of metadata descriptions for specific
values? E.g. for specific sensor modules, define which attributes to use
with what values. To prevent e.g. one project from using “Si7021” and
another “SI-7021” as a model number?

• Is a SensorThings Sensor a specific sensor instance, or a type of sensor?
SensorThings is vague about this (see
https://github.com/opengeospatial/sensorthings/issues/203), RIVM
SamenMeten seems to use a Sensor as a type of sensor (with many things
referencing the same sensor). Downside of the latter is that there is no
obvious place to store e.g. calibration info or a serial number for a sensor

CSDIF-001-RFC (revision 2, 2025-06-26)p32/37

https://github.com/opengeospatial/sensorthings/issues/203

instance (though that could be stored as metadata in the “properties”
attribute of a datastream?).

• Should we allow SensorML “typeOf” to model is-a relations for Things and
Sensors? This could allow modeling both the “sensor type” and “sensor
instance” concepts. But what URL should this point to? Another Thing or
Sensor, or something out-of-band?

• When data is imported into another system (for correlations or
aggregations), can we trace the origin of that data? Maybe with custom
attributes on the Datastream or Thing?

• Do we need to define metadata on the Location object (it has a “properties”
field)? For example “mounted on the (north-facing) wall” vs “mounted on a
lamp post” could be seen as metadata on the Location instead of the Thing
itself (which has the side effect of not creating a new version of the Thing
when just its Location and e.g. mounting orientation changes).

2.8 Risks

2.8.1 Using non-final specifications

The SensorML (JSON) Encoding standard is a fairly new specification, which is
still being finalized (January 2025). This might mean some parts of the
specification might still be unclear or might change in the near future.

Because of the newness of this specification, there is also not so much tooling
support and off-the shelf implementations.

However, since this specification builds on top of a much older (and
functionally/semantically equivalent) XML-based SensorML standard, these risks
should be minimal.

2.8.2 Specification complexity

The SensorThings and SensorML specifications are not simple specifications,
consisting of multiple parts, referencing external specifications, being very
generic, etc. Even though SensorThings was chosen as a standard that is less
complex than alternatives (such as Connected Systems), it is still not simple.

This means a considerable effort is needed to understand and implement these
specifications, which might provide a barrier for people to adopt CSDIF.

CSDIF-001-RFC (revision 2, 2025-06-26)p33/37

This risk could be partially mitigated by providing (in a future revision of CSDIF)
more detailed explanations and examples combined with pointers to the relevant
parts of the specifications that define details for these examples.

Additionally, providing reference implementations that can be used as-is would
also be helpful.

2.8.3 Privacy leaks

All (community science) initiatives are responsible for their own data, and the
protection of privacy sensitive data.

Privacy sensitive data can be split into two categories

1. Personal data (name, address, birthday, telephone number, etc)

2. Behavioral data (measurement location, environment, indoor temperatures,
etc)

CSDIF does not intend to support usecases where personal data is exchanged.
However, the exchanged data may include behavioral data.

Each initiative is responsible for ensuring that the right measures are taken for
the processing of privacy-sensitive data, and the way in which this is shared (or
not shared) with other initiatives. The principle is that data is stripped of privacy-
sensitive elements before it is shared.

3 Existing systems and solutions

3.1 Other protocols and systems that we considered
• SenML is a simple JSON/CBOR-based system for encoding observations

and units of measurements, but nothing else. Too limited in scope.

• OpenIOT framework is a system for data collection and streaming, but it is
not currently maintained.

• CKAN is a system for publishing open data, but it is mostly focused on
governments publishing open data, so focuses static and regular datasets
without much variation in systems and metadata.

• NetCDF is a generic system to encode data, which does not seem to have a
well-defined specification for metadata and is not very easy to work with.

CSDIF-001-RFC (revision 2, 2025-06-26)p34/37

• ODM2 is a datamodel for earth observations that operates in a similar
space as the various OGC standards (and also touches some of them). It is
a similarly comprehensive standard, that was not investigated well.

• SOSA/SSN by w3c is a RDF specification matching the OGC observations
and measurements. It seems limited to just an RDF datamodel, without an
API specification and without existing implementations to build on.

• OGC SOS is a predecessor of SensorThings, which occupies a similar
space. It is more expressive than SensorThings but uses XML instead of
JSON REST API.

• OGC Connected Systems is a successor of SensorThings (being finalized in
2025) which has a bigger feature set and has a more expressive (and a bit
more consistent) data model, but is also significantly more complex (both
in complexity of the model as well as complexity in the way the
specification is written, referencing also many external specifications). This
complexity, combined with limited existing tooling support would likely
hinder adoption too much.

3.2 Existing implementations of SensorThings

3.2.1 RIVM Samen Meten

The RIVM (Dutch National Institute for Public Health and the Environment) runs
“Samen Meten”, which is a data platform that collects measurement data
(primarily aimed at air quality and sound) and publishes this using the
SensorThings API v1.0 (unclear what implementation is used).

However, the metadata that is made available is limited. Some observations
about their use:

• Information on the sensor used is a bit vague. The “metadata” property
points to the same PDF for all Sensors, which vaguely defines 10
sensortypes (numbered 1-10). The “description” of the Sensor seems to be
an index into that list, but a lot of Sensors use higher numbers (so maybe
the PDF is out of date, or the name of the Sensor is the defining
characteristic). In any case, it seems only a single sensor type/model
attribute is encoded, no room for additional sensor properties.

• Raw output vs calibrated output is done with multiple Datastreams. The
distinction seems to be encoded in the name of the Datastream (“_kal”
suffix), but also in the definition property of the related ObservedProperty,

CSDIF-001-RFC (revision 2, 2025-06-26)p35/37

which references e.g. a eea-glossary url with a “?calibration=” url
parameter that references a textual description of the calibration applied.

• The Datastream name is composed of the Thing name and the property
measured, with an optional suffix for the calibrated version.

https://www.samenmeten.nl/

3.2.2 OpenSensorHub

OpenSensorHub (OSH) is a data collection server, written in java, is fully open-
source and modular. It contains modules for different OGC APIs that use a shared
database, allowing accessing the same data through different APIs (with some
limitations).

OSH implements SensorThings v1.0, but the module is disabled by default and
the code seems to have been stale for a couple of years, so this might not be the
easiest way to start using STA.

https://opensensorhub.org/

3.2.3 FROST server

The FRaunhofer Opensource SensorThings (FROST) Server is a data collection
server, written in Java. Its primary API is the SensorThings API (v1.1), but it
supports (or at least allows) also other data models or access methods using
plugins. It is actively maintained and probably an easy way to get started with
SensorThings.

https://github.com/FraunhoferIOSB/FROST-Server

4 Revision history
• 2025-05-05: Revision 1

◦ Initial version.

• 2025-06-26: Revision 2

◦ Restructured chapter 2 to be more readable and discuss the data model
separate from the access API.

◦ Added section “Object names, labels and descriptions” under “Other
considerations”.

◦ Added section “Specification complexity” under “Risk”.

CSDIF-001-RFC (revision 2, 2025-06-26)p36/37

https://github.com/FraunhoferIOSB/FROST-Server
https://opensensorhub.org/
https://www.samenmeten.nl/

◦ Clarified the relation between SensorThings and SensorML in various
places.

◦ Other minor improvements.

CSDIF-001-RFC (revision 2, 2025-06-26)p37/37

	1 Introduction
	1.1 Document scope and status
	1.2 Community vs Citizen Science
	1.3 Project and context
	1.4 Existing infrastructure and limitations
	1.5 Goals and usecases
	1.5.1 Non-goals
	1.5.2 Metadata concepts

	2 Proposal: Interchange format
	2.1 Approach
	2.1.1 Data model vs Access API
	2.1.2 Simple and complex implementations

	2.2 Underlying standards
	2.2.1 OGC Observations, Measurements & Samples (OMS)
	Features
	Observations
	Measurements
	Values
	Location
	Time
	Other concepts

	2.2.2 OASIS OData
	2.2.3 OGC SensorThings API (STA)
	Observation objects
	Datastream and MultiDatastream objects
	Sensor objects
	Thing objects
	­Object attributes
	API Endpoints

	2.2.4 OGC Sensor Model Language (SensorML)

	2.3 CSDIF Example
	2.4 Data model
	2.4.1 Objects from SensorThings
	2.4.2 Metadata using SensorML
	2.4.3 Ontologies
	2.4.4 Identifiers
	Unique identifier for observations
	Generating unique identifiers

	2.4.5 Storing Metadata

	2.5 Access API
	2.5.1 Query options

	2.6 Other considerations
	2.6.1 History of Things
	2.6.2 Thing location
	2.6.3 Coordinate reference frames
	2.6.4 Data modified for privacy reasons
	2.6.5 Timestamp precision
	2.6.6 Data ownership and licensing
	2.6.7 Object names, labels and descriptions
	2.6.8 SensorThings 2.0
	2.6.9 SensorThings requirement classes

	2.7 Open questions
	2.8 Risks
	2.8.1 Using non-final specifications
	2.8.2 Specification complexity
	2.8.3 Privacy leaks

	3 Existing systems and solutions
	3.1 Other protocols and systems that we considered
	3.2 Existing implementations of SensorThings
	3.2.1 RIVM Samen Meten
	3.2.2 OpenSensorHub
	3.2.3 FROST server

	4 Revision history

