CSDIF Proof of Concept

Document identifier: CSDIF-002-POC
Revision: Draftl

Date: 2026-01-23

License: CC-BY-4.0

https://www.csdif.info

Table of Contents

I § 01 oo Yo 10 Lot o) s DO OSSPSR 2
1.1 Proof Of CONCEPL OVEIVIEW.....cuiiiiiiiiiieiee e e e e e aenas 2

2 Overall CONSIAETAtIONS.ttt et e e e e et e ee e e e e eaneennaan 3
2.1.1 Coarse location - use geohash or h3..........cccoiiiiiiiii 3
2.1.2 Aggregating measurements in time..........ccoovviiiiiiiiiiiiniiie e 3
2.1.3 Multiple values from single SENSOT.........cccoviviiiiiiiiiiiiieeeeeeeeaas 4
2.1.4 Units of measurement UCUM or QUDToiuiniiiiiiiiieeeeeeeeeeeeeenn, 5
2.1.5 HiStOTY Of SEINISOTS. .. iuiiniiiiiiiiie ittt et e et et e e e e e e e e e e e e e eanaanas 6
2.1.6 Additional qualification on measurement / observedProperty............... 6
2.1.7 Uniqueness of ObservedProperty definitions..........cc.ccoceviiiiiiiiiininnnnn.e. 6
2.1.8 No FeatureOfInterest - use Thing Location.............cccceevviviniiiiiininnennnn.. 7
2.1.9 HistoricalLoation - how to interpret time............cccoiiiiiiiiiiiiiiin 7
2.1.10 Validity of locations not well-defined in SensorThings..............c........... 7
2.1.11 Location reliability and SOUTCE...........coeviviiiiiiiiiiieeeeeee e 8
2.1.12 Metadata: Datasheets and other documentation........................oee.ll. 9
2.1.13 NOMENCIATUTE. .. cuiiiiiiiiiee et e e e e e 9

3 Approach 1: existing STA implementation............cccevviiiiiiiiiiiiiiieeeeee e 10
3.1.1 ValidTime QUETIES......ceuiiiiiiiiiieeee e e e e e e e e aeanas 10
3.1.2 Metadata query perfOrmancCe..........cceeuuviniiueeiniieieeieeeeeeee e e e e 11

4 Approach 2: STA on top of existing datastore..........cccceeveiiiiiiiiiiniiiieieeee e, 11
5 STA data consumer - map with sensitive locations.............ccoooeiiiiiiiiininnnnen. 12
5.1.1 Datastream abstraCtion..........cccoouiiiiiiiiiiii s 13
5.1.2 Verbosity and purpose of names and description.............ccccceveeueennann.n. 13
5.1.3 Multiple APIs for different use Cases?.........cccvivviiiiiiiiiiiiiiiieiieiieieeieanns 14
5.1.4 Minimizing data traffiC..........cccoeiiiiiiiiii e 14

0 ReVISION NISTOTY . et e e e e eans 14

CSDIF-002-POC (revision Draftl, 2026-01-23) pl/14

https://www.csdif.info/

1 Introduction

CSDIF (Community Science Data Interchange Format) aims to define a standard
for exchanging observational data, along with rich metadata between
institutional and community science organisations.

In 2025, a proposal (in the form of a request for comments) was published
(Document CSDIF-001-RFC) that solicits comments on the proposed approach:
Using the existing SensorThings API and SensorML metadata format, with
additional recommendations, requirements and scope limitations defined by the
(to-be-written) CSDIF specification.

Halfway 2025 work started on an initial proof-of-concept implementation (PoC)
has been been made to evaluate the ideas in the RFC and provide a platform to
try some of the parts of the proposal that are still uncertain.

This document reports on the experiences in creating and working with this PoC.
The focus is to document things that came during the development. In some
cases, this provided an answer or additional considerations to an open question
from the RFC, but a lot of the insights in this document open up new questions
(and sometimes answer them directly as well).

So far, the development has focused on getting the PoC in a working state. In the
next phase of development, the PoC can be used to more systematically explore
the issues and questions defined in the RFC and this document and support
creating a final specification for CSDIF.

This is an early draft version of this document, which will be expanded and
improved when more experience with the PoC is gathered.

1.1 Proof of Concept overview

For this proof of concept, two different approaches to a CSDIF data API were
explored:

1. Meet Je Stad developed a solution based on an off-the-shelf SensorThings
server (FROST-Server), which is intended to function as the primary
storage for the observation data. Data is converted into CSDIF format
before storage.

2. SMAL Zeist implemented the SensorThings API from scratch, with
conversion from their existing ElasticSearch-based storage backend into
the SensorThings model and SensorML metadata format on request.

CSDIF-002-POC (revision Draftl, 2026-01-23) p2/14

These two approaches both seem reasonable for initiatives to adopt and are
expected to produce a significantly different implementation experience and
likely different demands of a CSDIF specification.

In addition, a web application that can consume data via the CSDIF protocol and
allow interactive exploration of the observations of both systems on a map was
built, to additionally obtain experience from the perspective of a data consumer.

The rest of this document contains more detailed description of these three
parts, along with some specific issues or observations that were made while
implementing these proof-of-concepts.

2 Overall considerations

2.1.1 Coarse location - use geohash or h3

Maybe inside GeoJSON as foreign member

(https://datatracker.ietf.org/doc/html/rfc7946#section-6.1), combined with
GeoJSON polygon (https://datatracker.ietf.org/doc/html/rfc7946+#section-3.1.6)7?

GeoHash is probably easier to work with than GeoJSON polygon for consumers.

Or instead of GeoJSON (but there is no existing GeoHash mimetype, so we would
need to invent our own).

Alternatively, a Thing can have multiple Location objects, which should be
different representations of the same location, so we could also have one
GeoHash Location and one GeoJSON-with-polygon location? However, this only
applies to the Thing Location (and HistoricalLocation), an Observation
FeatureOfInterest can only have one value.

2.1.2 Aggregating measurements in time

The STA departs from the intuitive device oriented approach to data that many
initiatives will have adopted which ties several measurements to a single
timestamp. This makes it easy to process time series as data have a strong
conceptual tie (they were done at the same moment) and can be processed easily
a graphs with a common time on the x axis. Perhaps a clustering in time (like h3
does for geolocation) is a workable solution. But is this something that should
happen at the server or at the client? And do standards exist for temporal
aggregation?

CSDIF-002-POC (revision Draftl, 2026-01-23) p3/14

https://datatracker.ietf.org/doc/html/rfc7946#section-3.1.6
https://datatracker.ietf.org/doc/html/rfc7946#section-6.1

2.1.3 Multiple values from single sensor

How to model e.g. the Si7021 measuring both temperature and humidity, or an
SPS030 to measure PM1, PM2.5 and PM10 (also in both mass/volume and
particle counts)? Should this be separate datastreams (and should those refer to
different sensors to allow per-output metadata, or to the same sensor object to
clarify that it is physically the same sensor providing both outputs)? Or should
this be a single (composite/multi) datastream providing multiple values?

One downside of a single multidatastream is that in STA 1.1, it contains a list of
values. Each has its own ObservedProperty and UnitOfMeasurement, but does
not have a name (only the ObservedProperty has a name, but that does not allow
distinguishing multiple values that share the same kind of observed property).

STA 2.0 fixes this by using SWE Common encoding for all datastreams, which
allows using a DataRecord type, which is a dictionary of key/name - value pairs,
allowing to name each entry (see https://hylkevds.github.i0/23-019/23-
019.html# d1f96f6d-5d3b-belc-1e43-cd24a9b33293 section 8.6 Datastream,
listing 12 and 13).

In writing the data consumer, it turns out multiple values per
datastream/observation is also inconvenient, when filtering for a single kind of
measurement (based on ObservedProperty), the consumer still has to do
significant client-side processing to determine which of the multiple values is the
interesting one.

What could define when to group values or when to separate them?

* Group all values produced by the same physical sensor.
This adds extra structure (e.g. two sensors of the same type in the same
Thing could refer to the same Sensor object and the grouping determines
which belongs to which). This structure could maybe better be added by
adding a serial number of sensor index to the sensor metadata and
grouping based on those.

* Group values that are (almost) always used together, for example
latitude/longitude (when storing GPS output as an Observation).

* Group values that are essentially the same measurement, but with different
parameters or qualifications. For example, particulate matter
measurements for different sizes are the same measurement (such as
mass-per-volume). Or an audio spectrum, where all measurements are
amplitude, but derived at different frequencies.

CSDIF-002-POC (revision Draftl, 2026-01-23) p4/14

https://hylkevds.github.io/23-019/23-019.html#_d1f96f6d-5d3b-be1c-1e43-cd24a9b33293
https://hylkevds.github.io/23-019/23-019.html#_d1f96f6d-5d3b-be1c-1e43-cd24a9b33293

* Do not group values at all.
For values that are very much related/connected, such as
latitude/longitude, could maybe be presented as a single complex value.
STA supports this using the generic "OM Observation™ type (see table 12),
which allows any data type (presumably including arbitrary objects,
GeoJSON, etc.).

2.1.4 Units of measurement UCUM or QUDT

CSDIF currently suggests using UCUM or alternatively QUDT for units of
measurement. Egon found that QUDT provided an off-the-shelf “pg/m3” unit that
UCUM might not have (or maybe it is available but must be composed from
parts?).

However STA 2.0 switches the SWE Common to describe the observation format,
which includes an uom member, which has a “code” member that explicitly
refers to a UCUM code. However, it can, additionally or alternatively, also refer
to an explicit URI using the “href” member, so that still allows using QUDT when
appropriate (one example also shows using both a UCUM code and QUDT url).

See e.g. https://docs.ogc.org/DRAFTS/24-014.html#json unitreference obj

It does seem that UCUM does not associate URIs with units, just a code (case
sensitive and case insensitive version), name and a print symbol. STA needs a
name, symbol and and definition URI. STA also recommends following UCUM,
but is not explicit how exactly. The examples (only for degree Celcius and
percent, so no multi-part units) suggest it uses the UCUM name for name, the
UCUM print symbol for symbol and a link to a section of the UCUM specification
(e.g. http://unitsofmeasure.org/ucum.html#para-30, which is a dead link,
https://ucum.org/ucum#para-30 is a working equivalement). There is no way to
put the the machine-readable (non-print) symbol, and the rough URL pointing to
the spec really is useless.

https://github.com/units-of-measurement/units-of-measurement makes an
attempt to encode UCUM codes into w3id.org URIs, but that requires
normalizing units (which might be useful for direct string comparison, but might
be harder for humans, e.g. normalizing m/s to m.s-1 or N.m to m.N).

In the current CSDIF RFC example we used “ucum:%”, probably in a self-
invented “URI” code. An alternative could be something like

https://ucum.org/ucum?code=m/s. Or maybe we, or ucum.org can host some URL
which you can pass a ucum code which will then be parsed, validated and

explained (ideally using only client-side javascript to make it easily scaleable).

CSDIF-002-POC (revision Draftl, 2026-01-23) pb5/14

https://ucum.org/ucum?code=m/s
https://github.com/units-of-measurement/units-of-measurement
https://ucum.org/ucum#para-30
http://unitsofmeasure.org/ucum.html#para-30
https://docs.ogc.org/DRAFTS/24-014.html#json_unitreference_obj
https://docs.ogc.org/is/18-088/18-088.html#tab-value-codes-obstypes

2.1.5 History of sensors

For things, CSDIF defines history can be kept by creating distinct things with the
same uniqueld but non-overlapping validTimes. For Sensors, this is not specified.
It is also meaningless if a Sensor refers to a type of sensor. However, if Sensor
would refer to a specific physical sensor (e.g. identified by a serial number), then
it might be relevant to keep history for it. This could then be done in the same
way as for things?

Alternatively, a sensor can be seen as part of a Thing, which means versioning
just the things is sufficient.

2.1.6 Additional qualification on measurement /
observedProperty

How to specify the observed property is e.g. air temperature (as opposed to
water temperature or soil temperature)? Technically this would maybe be a
property of the FeatureOfInterest, but in STA that is defined as the
place/location/geoshape, not more specific than that.

Also, how about e.g. different PM sizes? Now PM2.5 is distinguished from PM10
based on the observedProperty name, but that might not actually be accurate, or
description, which is very much not machine-readable.

The ObservedProperty object does have a free-form “properties” member that
could maybe store this, or maybe it could be appended as URL parameters to the
“definition” URI (though QUDT does not specify any of this, and I have not seen
examples of this anywhere).

2.1.7 Uniqueness of ObservedProperty definitions

It seems useful to do some deduplication on ObservedProperty - if multiple
datastreams and things measure the same thing, reference the same
ObservedProperty.

However, should this mean only a single ObservedProperty object should exists
for each used “definition” value? In other words, does the “name”, “description”
and any free-form “properties” follow deterministically from the “definition”? Or
can those be used to create distinct ObservedProperties with the same

definition? The above question (about PMx values) suggest the latter.

Also, if the values of these attributes are dictated by measurement station (and
sent over the wire), then how to handle duplication (i.e. one state using
name="temperature” and another using name="temp”)? Or should stations
always just send out a definition and expect the server to figure out the

CSDIF-002-POC (revision Draftl, 2026-01-23) p6/14

name/description? That is probably not generically possible (for qudt you could
get the label and use that for name, though).

Maybe CSDIF could publish a list of commonly used ObservedProperties, with
definintion, name and description, which could be preloaded by implementers to
get some consistency in name/description used for these properties.

2.1.8 No FeatureOfinterest - use Thing Location

CSDIF states that the FOI of an Observation is optional and can default to the
Thing Location, but on closer reading, this only applies when creating the
Observation - A server implementation should copy the Location contents from
the Thing into the FOI at that time, so queries always return one.

Unfortunately, a FOI contains a location embedded instead of linking to a
Location object, so if the location of a Thing is updated retroactively, this also has
to explicitly update appropriate FOI objects.

2.1.9 HistoricalLoation - how to interpret time

The HistoricalLocation object has a “time” property, which means “The time
when the Thing is known at the Location”. In other words, it is not possible to
express a validity range, only an instant. For GPS-supplied positions, this might
be fine, since then you likely only have point-in-time samples, but for manually
configured locations, you might have more detailed information on when a Thing
was moved exactly.

Also, the current Location does not have a time attribute, so there is no way to
tell when the current Location was sampled. The spec suggests auto-creation of
HistoricalLocation when the Location attribute is written
(https://docs.ogc.org/is/18-088/18-088.html#requirement-create-update-delete-
historical-location-auto-creation) but without specifying the value to use for the
HistoricalLocation “time” attribute (but it would follow that the only reasonable
value available is the time at which the change took place, which would make
“time” the time when the location *stopped* being valid, instead of when it was
valid or sampled.

2.1.10 Validity of locations not well-defined in SensorThings

In SensorThings, a Thing has a location, which represents its current location.
The data model does not specify explicitly (since) when a Thing’s Location is
valid, other than that it is meant for the current location.

Then a Thing also has zero or more HistoricalLocations, each of which consist of
a Location (position) and a timestamp. The meaning of the timestamp is not

CSDIF-002-POC (revision Draftl, 2026-01-23) p7/14

https://docs.ogc.org/is/18-088/18-088.html#requirement-create-update-delete-historical-location-auto-creation
https://docs.ogc.org/is/18-088/18-088.html#requirement-create-update-delete-historical-location-auto-creation

exactly defined (is it the start or the end of the period that the thing was at this
location), just that the thing was at this location at that particular time. For a
location coming from GPS, this makes some sense, since between GPS readings
the location is unknown anyway, so the time could indicate the moment that the
GPS reading was made at this particular location. Assuming that any subsequent
GPS readings the produce the same result (or close enough) are either not
transmitted, or at least do not result in creating a new HistoricalLocation, it
makes sense that timestamp indicates the first moment the given Location is
correct, implying it is correct until the next HistoricalLocation.

For manually configured locations, you typically do not have a location valid at a
particular moment in time, but a user can indicate the validity range explicitly,
but then it is still possible to store the “valid from” in the location and be valid
until the timestamp of the next Location (and for non-consecutive locations, i.e.
gaps in the location history that could be the result of this, inserting unknown
Location objects could be used to make these gaps explicit if needed).

However, SensorThings (req 8) also specifies that if the Location of a Thing is
updated, then the server should automatically create a HistoricalLocation.
Initially we interpreted this as creating a HistoricalLocation to contain the old
Location (meaning that the full list of locations would be all HistoricalLocations
followed by the current Location). The spec is not explicit about what timestamp
to use, but only the current time would make sense here (it specifies a client can
update the timestamp later). If this is done, then the timestamp stored with a
HistoricalLocation would actually mean the timestamp until the given
HistoricalLocation is valid, which is inconsistent with the above conclusion.

However, re-reading the spec it seems it is not so clear what HistoricalLocation
should be created. It could also be taken to mean that whenever a Location is
written to a thing, that Location should also be saved as a HistoricalL.ocation
with the same time. This would mean that the timestamp for the
HistoricalLocation would indeed indicate the first moment of validity for the
HistoricalLocation and is consistent with the above. This is also supported by req
46 in the spec, which specifies the current Location of a Thing should be updated
if a HistoricalLocation is added manually. Both of these would mean that the
current Location is always duplicated by the most recent HistoricalLocation.

2.1.11 Location reliability and source

We probably need some metadata about where a location / featureofinterest
comes from, and how reliable it is. This likely needs some additional fields in the
geojson. Keeping a source (GPS / Manually specified / Network) makes sense.

CSDIF-002-POC (revision Draftl, 2026-01-23) p8/14

Maybe an “age” property to keep track when the position was last confirmed, but
that does not allow expressing the extra confidence in a location that was
confirmed (some time) both before and after the observation. Maybe a
confidence to distinguish between a location for an observation that is confirmed
on just one GPS reading, or confirmed by a reading before and after?
Alternatively, if the GPS readings before and after are significantly different, all
observations in between could be set to an unknown location (or use the “before”
location and set a low confidence). Possible a TTN join can also be used as a
heuristic in here - if a TTN join is received, it is likely that the station was moved
at that point (and maybe it is acceptable to assign a low confidence to all
observations shortly before and after a rejoin).

Note that confidence here is about whether the location was actually valid at the
time of observation. How accurate the location is, would be a different subject
and could be quantified differently.

2.1.12 Metadata: Datasheets and other documentation

SensorML defines a “Documentation” member for adding documentation for a
described object, referring to the ISO 19115 CI OnlineResource object to
describe a specific document. To describe the role of the document (manual,
brochure, datasheet, etc.), SensorML defines a xlink:arcrole attribute (in the
XML version). The examples for this attribute use values like
http://sensorml.com/ont/swe/role/UserManual or
http://sensorml.com/ont/core/doc/MaintenanceManual, but neither of these
ontologies (swe/role and core/doc) are still available online (other ontologies like
swe/system are available on the same base url). It is not immediately clear if
these were removed, or these were never officially published and the examples
were written in anticipation of publishing these ontologies (which then never
happened).

The later SensorML JSON specification uses roles like
http://dbpedia.org/resource/Datasheet, so this seems good to use here as well.

Dbpedia seems a crowd-funded huge database of concepts. Searching it seems to
be hidden a bit, but https://lookup.dbpedia.org/ works reasonably well.

2.1.13 Nomenclature

STA settled on a rather unintuitive nomenclature, with the consequence that
human observers become a Thing. This seems an unnecessary barrier to entry.
Can we propose a dialect and translate entities? E.g.

* Thing — Observer (who)

e FeatureOfInterest - Observee (where)

CSDIF-002-POC (revision Draftl, 2026-01-23) p9/14

https://lookup.dbpedia.org/
http://dbpedia.org/resource/Datasheet
https://docs.ogc.org/is/23-000/23-000.html#_ab0d202b-3eba-492c-33f1-f1d37f1d7d67
http://sensorml.com/ont/core/doc/MaintenanceManual
http://sensorml.com/ont/swe/role/UserManual

* ObservedProperty —» Phenomenon (what)

3 Approach 1: existing STA implementation

API Accessible at: https://data-test.meetjestad.net/SensorThings/v1.1/
Code published at:

https://github.com/meetjestad/mjs backend design/tree/backend-prototype-frost-
sta

This proof-of-concept centers around the use of FROST-Server
(https://github.com/FraunhoferIOSB/FROST-Server), an existing open-source
SensorThings v1.1 implementation, which is used as-is, together with a number
of Python-based services that handle reception, conversion and insertion of the
data.

In this proof-of-conept, data produced by measurement stations (transmitted via
LoRaWAN) is converted into the SensorThings model and SensorML metadata
directly when it is received and then stored inside the FROST-Server in that
format.

Initially, this is done by converting the existing data format, by adding metadata
and converting the data into the right format. This needs a fairly big converter /
data ingester, which has a lot of out-of-band knowledge about stations and
sensors used.

In the next step, a new protocol is developed for communication between the
measurement station and the server which is aligned with the CSDIF data model,
making the measurement station produce data already in (a heavily compressed)
CSDIF format. This means the server side data ingester is very light-weight,
mostly applying straightforward decompression and enriching of metadata
according to predictable principles.

3.1.1 ValidTime queries

To find the currently valid (or harder: valid at a particular time) version of a
Thing, you need to query based on the validTime property inside the SensorML.
FROST-Server supports querying these nested values, but does not know the
schema for the SensorML metadata, so cannot use datetime filtering on these
fields.

CSDIF-002-POC (revision Draftl, 2026-01-23) pl10/14

https://github.com/FraunhoferIOSB/FROST-Server
https://github.com/meetjestad/mjs_backend_design/tree/backend-prototype-frost-sta
https://github.com/meetjestad/mjs_backend_design/tree/backend-prototype-frost-sta
https://data-test.meetjestad.net/SensorThings/v1.1/

However, since datetimes are stored as ISO formatted strings, they should be
string-comparable as well, assuming they are all in the same timezone (and the
consumer knows this timezone).

3.1.2 Metadata query performance

To find the Thing to add an observation to, the datastore must be queried based
on the Thing’s uniqueid and its validTime. These fields are not default STA fields,
but embedded in the metadata field (with free-form JSON content). FROST-
Server supports these queries (using postgres jsonb fields), but it is expected
that if the dataset grows, such queries will become prohibitively expensive and
slow. To fix this, indexes must be added to support such queries. It seems
postgresql supports such indexes, but this needs further investigation (also to
see iffhow FROST-Server supports creating these)

4 Approach 2: STA on top of existing datastore

API Accessible at:
https://sensorthings-api.meten-natuurlijk.nl/sensorthings-api/SensorThingsServic

e/v1.0
Code published at: TBD

The “Zeister implementation” is an implementation of the OGC SensorThingsAPI
build using the Rust programming language and Axum. It does not store any
data, but queries existing measurements from a data-access-api. The data-
access-api acts as a Elasticsearch facade, and also does not store any data.

The data-access-api is needed to filter out data, like privacy sensitive data and
non-production data, but also allows for data anonimization (i.e. reduce the
number of digits on a GPS coordinate).

This has several advantages:
* No need for data duplication to a second data-store
* No extra costs for data-storage
* No data inconsistencies (the queried data is always accurate)
 Low maintenance solution (it can only be up or down, not inconsistent)

* Code ownership. Full control over the architecture and code quality.
Adding features and fixing issues can be done quickly.

* The implementation has a replaceable backend. The implementation can be
reused for other data-sources. This does not change the architecture of the

CSDIF-002-POC (revision Draftl, 2026-01-23) pli/14

https://sensorthings-api.meten-natuurlijk.nl/sensorthings-api/SensorThingsService/v1.0
https://sensorthings-api.meten-natuurlijk.nl/sensorthings-api/SensorThingsService/v1.0

application. Only a specific backend-adapter and data mapper need to be
developed.

It also has some disadvantages:
* A custom implementation of the OGC STA needs to be developed
* Responsibility for maintaining the source-code and fixing (security) issues.

The measurements in the Elasticsearch index are “rich measurements”. They
contain measurement information and metadata like the time, location, device,
sensor and measurement type of the measurement.

This allows the OGC STA implementation to return Observations, Locations,
Things, Datastreams, FeaturesOfInterest and ObservedProperties from a single
data source.

The OGC STA implementation generates synthetic ID’s for @iot.id which are
round-trip proof.

The implementation consists of an API-layer (frontend), Routing-layer, Mapping-
layer and Model layer. The software uses Dependency Injection for increased
testability.

4.1.1 Rust/Axum routing

Rust/Axum by default uses a routing pattern that is based on /path _a/:id and
/path_a/:id/path_b

This conflicts with the routing pattern that OGC STA requires. The OGC STA
requires parentheses around an ID: /type_a/(:id)/type b

The default Axum router does not handle the brackets nicely, so a special form of
routing needs to be implemented.

5 STA data consumer - map with sensitive
locations
Application accessible at: https://meetjestad.net/spuksla/map

For exploring the data interactively, a map application was created. This
application runs entirely in the browser, using direct HTTP requests to any
CSDIF or SensorThings server.

In addition to working with the two systems built for this proof-of-concept, the
application was also made to work with the RIVM Samen Meten platform at

CSDIF-002-POC (revision Draftl, 2026-01-23) pl2/14

https://meetjestad.net/spuksla/map

https://api-samenmeten.rivim.nl/v1.0/. This platform also uses SensorThings, and
even though it lacks the additional (SensorML) metadata that CSDIF uses, the

basic observational data can still be obtained via the regular SensorThings
interface.

5.1.1 Datastream abstraction

When writing the consumer, the datastream abstraction (especially combined
with multiple values in the same observation/datastream) turned out to be
somewhat tricky to query and comprehend.

Whether or not to combine values is already discussed elsewhere.

On additional observation is that (multi)datastream is essentially an abstraction
that has no direct relation to a real-world concept. This is unlike other concepts
like Thing, Observation, FeatureOfInterest, etc.

Essentially a datastream is just a way to group similar observations, where the
similarity includes at least having the same ObservedProperty,
UnitOfMeasurement, Sensor and Thing, but additional grouping could also be
made. If no such additional grouping is made, one can also ignore datastreams
semantically and consider Observations as a big unsorted pile of them, and only
see the datastreams as a syntactical concept via which Observation properties
like Sensor or ObservedProperty are stored/accessed.

Possibly one big reason why datastreams exist at all, is to reduce data
duplication and make Observation objects as small as possible.

5.1.2 Verbosity and purpose of names and description

In various places, the data model has name and description properties, such as
for a Thing, Datastream, Sensor or ObservedProperty. The SensorThings
specification does not provide specific guidance about the purpose and format of
these properties, other than that they are intended for human consumption.

In an initial version of the proof of concept, the ObservedProperty name was
filled with very compact names (which could be used as variable names), but
those are not very friendly to display to users. For this reason, the description
was used to display, but that turned out to be too verbose.

In a later version, the names were changed to be human-readable but concise,
with the description being more verbose.

The CSDIF specification should provide some guidance and examples on these
properties.

CSDIF-002-POC (revision Draftl, 2026-01-23) pl13/14

https://api-samenmeten.rivm.nl/v1.0/

5.1.3 Multiple APIs for different use cases?

Discussing data interchange we need to discriminate between data storage, data
exchange, data consumption. These each come with different tradeoffs between
verbosity vs (footprint)efficiency, universality vs accessibility, queryablilty vs
(processing)efficiency. To what extent can these uses be accommodated into one
API?

Another way to cut this may be to discriminate between power users and first
timers and develop two API’s: one for conviviality and another one for data
nerds.

5.1.4 Minimizing data traffic

How to minimize data traffic: supporting $export=CVS or $export=geo]SON
would cut some overhead and also address some of the concerns stated above
(5.1.3).

6 Revision history
+ 2026-01-23: Draft 1

o Initial version.

CSDIF-002-POC (revision Draftl, 2026-01-23) pl4/14

	1 Introduction
	1.1 Proof of Concept overview

	2 Overall considerations
	2.1.1 Coarse location - use geohash or h3
	2.1.2 Aggregating measurements in time
	2.1.3 Multiple values from single sensor
	2.1.4 Units of measurement UCUM or QUDT
	2.1.5 History of sensors
	2.1.6 Additional qualification on measurement / observedProperty
	2.1.7 Uniqueness of ObservedProperty definitions
	2.1.8 No FeatureOfInterest – use Thing Location
	2.1.9 HistoricalLoation – how to interpret time
	2.1.10 Validity of locations not well-defined in SensorThings
	2.1.11 Location reliability and source
	2.1.12 Metadata: Datasheets and other documentation
	2.1.13 Nomenclature

	3 Approach 1: existing STA implementation
	3.1.1 ValidTime queries
	3.1.2 Metadata query performance

	4 Approach 2: STA on top of existing datastore
	4.1.1 Rust/Axum routing

	5 STA data consumer – map with sensitive locations
	5.1.1 Datastream abstraction
	5.1.2 Verbosity and purpose of names and description
	5.1.3 Multiple APIs for different use cases?
	5.1.4 Minimizing data traffic

	6 Revision history

